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Abstract

This paper describes how we used regres-
sion rules to improve upon a result previ-
ously published in the Earth science litera-
ture. In such a scienti�c application of ma-
chine learning, it is crucially important for
the learned models to be understandable and
communicable. We recount how we selected
a learning algorithm to maximize communi-
cability, and then describe two visualization
techniques that we developed to aid in under-
standing the model by exploiting the spatial
nature of the data. We also report how eval-
uating the learned models across time let us
discover an error in the data.

1. Introduction and Motivation

Many recent applications of machine learning have fo-
cused on commercial data, often driven by corporate
desires to better predict consumer behavior. Yet sci-
enti�c applications of machine learning remain equally
important, and they can provide technological chal-
lenges not present in commercial domains. In par-
ticular, scientists must be able to communicate their
results to others in the same �eld, which leads them
to agree on some common formalism for representing
knowledge in that �eld. This need places constraints
on the representations and learning algorithms that we
can utilize in aiding scientists' understanding of data.

Moreover, some scienti�c domains have characteristics
that introduce both challenges and opportunities for
researchers in machine learning. For example, data
from the Earth sciences typically involve variation over
both space and time, in addition to more standard pre-
dictive variables. The spatial character of these data

suggests the use of visualization in both understand-
ing the discovered knowledge and identifying where it
falls short. The observations' temporal nature holds
opportunities for detecting developmental trends, but
it also raises the specter of calibration errors, which
can occur gradually or when new instruments are in-
troduced.

In this paper, we explore these general issues by pre-
senting the lessons we learned while applying ma-
chine learning to a speci�c Earth science problem:
the prediction of Normalized Di�erence Vegetation In-
dex (NDVI) from predictive variables like precipitation
and temperature. We begin by reviewing the scienti�c
problem, including the variables and data, and propos-
ing regression learning as a natural formulation. Af-
ter this, we discuss our selection of regression rules
to represent learned knowledge as consistent with ex-
isting NDVI models, along with our selection of Quin-
lan's Cubist (Rulequest, 2001) to generate them. Next
we compare the results we obtained in this manner
with models from the Earth science literature, show-
ing that Cubist produces signi�cantly more accurate
models with little increase in complexity.

Although this improved predictive accuracy is good
news from an Earth science perspective, it comes as
little surprise to those with a background in machine
learning. However, in our e�orts to communicate the
discovered knowledge to our Earth science collabora-
tors, we have also developed two novel approaches to
visualizing this knowledge spatially, which we report
in some detail. Moreover, evaluation across di�erent
years has revealed an error in the data, which we have
since corrected. We discuss some broader issues that
these experiences raise and propose some general ap-
proaches for dealing with them in other spatial and
temporal domains. In closing, we also review related
work on scienti�c data analysis in this setting and pro-
pose directions for future research.



2. Monitoring and Analysis of Earth

Ecosystem Data

The latest generation of Earth-observing satellites is
producing unprecedented amounts and types of data
about the Earth's biosphere. Combined with readings
from ground sources, these data hold promise for test-
ing existing scienti�c models of the Earth's biosphere
and for improving them. Such enhanced models would
let us make more accurate predictions about the e�ect
of human activities on our planet's surface and atmo-
sphere.

One such satellite is the NOAA (National Oceanic and
Atmospheric Administration) Advanced Very High
Resolution Radiometer (AVHRR). This satellite has
two channels which measure di�erent parts of the elec-
tromagnetic spectrum. The �rst channel is in a part
of the spectrum where chlorophyll absorbs most of the
incoming radiation. The second channel is in a part
of the spectrum where spongy mesophyll leaf struc-
ture re
ects most of the light. The di�erence between
the two channels is used to form the Normalized Dif-
ference Vegetation Index (NDVI), which is correlated
with various global vegetation parameters. Earth sci-
entists have found that NDVI is useful for various
kinds of modeling, including estimating net ecosystem
carbon 
ux. A limitation of using NDVI in such mod-
els is that they can only be used for the limited set of
years during which NDVI values are available from the
AVHRR satellite. Climate-based prediction of NDVI
is therefore important for studies of past and future
biosphere states.

Potter and Brooks (1998) used multiple linear regres-
sion analysis to model maximum annual NDVI1 as a
function of four climate variables and their logarithms:

� Annual Moisture Index (AMI)

� Chilling Degree Days (CDD)

� Growing Degree Days (GDD)

� Total Annual Precipitation (PPTTOT)

These climate indexes were calculated from various
ground-based sources, including the World Surface
Station Climatology at the National Center for At-
mospheric Research. Potter and Brooks interpolated

1They obtained similar results when modeling minimum
annual NDVI. We chose to use maximum annual NDVI as
a starting point for our research, and all of the results in
this paper refer to this variable.

the data, as necessary, to put all of the NDVI and cli-
mate data into one degree grids. That is, they formed
a 360� 180 grid for each variable, where each grid cell
represents one degree of latitude and one degree of lon-
gitude, so that each grid covers the entire Earth. They
used data from 1984 to calibrate their model. Potter
and Brooks decided, based on their knowledge of Earth
science, to �t NDVI to these climate variables by using
a piecewise linear model with two pieces. They split
the data into two sets of points: the warmer locations
(those with GDD � 3000), and the cooler locations
(those with GDD < 3000). They then used multiple
linear regression to �t a di�erent linear model to each
set. They obtained correlation coeÆcients (r values) of
0.87 on the �rst set and 0.85 on the second set, which
formed the basis of a publication in the Earth science
literature (Potter & Brooks, 1998).

3. Problem Formulation and Learning

Algorithm Selection

When we began our collaboration with Potter and his
team, we decided that one of the �rst things we would
do would be to try to use machine learning to improve
upon their NDVI results. The research team had al-
ready formulated this problem as a regression task,
and in order to preserve communicability, we chose
to keep this formulation, rather than discretizing the
data so that we could use a more conventional machine
learning algorithm. We therefore needed to select a
regression learning algorithm | that is, one in which
the outputs are continuous values, rather than discrete
classes.

In selecting a learning algorithm, we were interested
not only in improving the correlation coeÆcient, but
also in ensuring that the learned models would be both
understandable by the scientists and communicable to
other scientists in the �eld. Since Potter and Brooks'
previously published results involved a piecewise linear
model that used an inequality constraint on a variable
to separate the pieces, we felt it would be bene�cial
to select a learning algorithm that produces models
of the same form. Fortunately, Potter and Brooks'
model falls within the class of models known as regres-
sion rules in the machine learning community (Weiss
& Indurkhya, 1993). A regression rule model consists
of a set of linear models and a set of inequality \cuts"
on the variables to select among the individual linear
models, yielding a piecewise linear model. To induce
such rules, we selected Cubist, a commercial product
from Rulequest Research (2001), which has evolved
out of earlier work with C4.5 (Quinlan, 1993) and M5
(Quinlan, 1992).



Table 1. The e�ect of Cubist's minimum rule cover param-

eter on the number of rules in the model and the model's

correlation coeÆcient.

min. rule cover No. rules r

1% 41 0.91
5% 12 0.90
10% 7 0.89
15% 4 0.88
20% 3 0.86
25% 2 0.85
100% 1 0.84

4. First Results

We ran Cubist using the same data sets that Potter
and Brooks had used to build their model, but instead
of making the cuts in the piecewise linear model based
on knowledge of Earth science, we let Cubist decide
where to make the cuts based on the data. The results
exceeded our expectations. Cubist produced a correla-
tion coeÆcient of 0.91 (using ten-fold cross-validation),
which was a substantial improvement over the 0.86
correlation coeÆcient obtained in Potter and Brooks'
earlier work. Potter and his team were pleased with
the 0.91 correlation coeÆcient, but when we showed
them the 41 rules produced by Cubist, they had diÆ-
culty interpreting them. Some of the rules clearly did
not make sense, and were probably a result of Cubist
over�tting the data. More importantly, the large num-
ber of rules | some 41 as compared with two in the
earlier work | was simply overwhelming.
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Figure 1. The number of rules in the Cubist model and

the correlation coeÆcient for several di�erent values of the

minimum rule cover parameter.

The �rst step we took in response to this understand-
ability problem was to change the parameters to Cu-
bist so that it would produce fewer rules. One of these

Table 2. The two rules produced by Cubist when the min-

imum rule cover parameter is set to 25%.

Rule 1:

if

ppttot <= 25.457

then

fasmax = -3.22465 + 7.07 ppttot + 0.0521 cdd

- 84 ami + 0.4 ln(ppttot) + 0.0001 gdd

Rule 2:

if

ppttot > 25.457

then

fasmax = 386.327 + 316 ami + 0.0294 gdd

- 0.99 ppttot + 0.2 ln(ppttot)

parameters speci�es the minimum percentage of the
training data that must be covered by each rule. The
default value of 1% produced 41 rules. We experi-
mented with di�erent values of this parameter between
1% and 100%; the results appear in Table 1 and Fig-
ure 1. Using a model with only one rule | that is,
using conventional multiple linear regression analysis
| results in a correlation coeÆcient of 0.84, whereas
adding rules gradually improves accuracy. Interest-
ingly, when using two rules, Cubist split the data on
a di�erent variable than the one the Earth scientists
selected. Potter and Brooks split the data on GDD
(essentially temperature), while Cubist instead chose
precipitation, which produced a very similar correla-
tion coeÆcient (0.85 versus 0.86). The two-rule model
produced by Cubist is shown in Table 2.

In machine learning there is frequently a tradeo� be-
tween accuracy and understandability. In this case, we
are able to move along the tradeo� curve by adjusting
Cubists' minimum rule cover parameter. Figure 1 il-
lustrates this tradeo� by plotting the number of rules
and the correlation coeÆcient produced by Cubist for
each value of the minimum rule cover parameter in Ta-
ble 1. We believe that generally a model with fewer
rules is easier to understand, so the �gure essentially
plots accuracy against understandability. A useful fea-
ture for future machine learning algorithms would be
the ability to directly specify the maximum number
of rules in the model as a parameter to the learning
algorithm.2 We used trial and error to select values
for the minimum rule cover parameter that produced
the number of rules we wanted for understandability
reasons.

2After reviewing a draft of this paper, Ross Quinlan
decided to implement this feature in a future version of
Cubist.



Figure 2. Map showing which Cubist rules are active across

the globe.

5. Visualization of Spatial Models

Reducing the number of rules in the model by mod-
ifying Cubists' parameters made the model more un-
derstandable, but to further understand the rules, we
and the Earth scientists decided to plot which rules
were active where. In Figure 2, the black areas rep-
resent portions of the globe that were excluded from
the model because they are covered with water or ice,
or because there was insuÆcient ground-based data
available.3 The white areas are regions in which more
than one rule in the model applied. (In these cases,
Cubist uses the average of all applicable rules.) The
gray areas represent regions in which only one rule
applies; the six shades of gray correspond to the six
rules. (We normally use di�erent colors for the di�er-
ent rules, but resorted to di�erent shades of gray for
these proceedings.)

Potter and his team found this map very interesting,
because one can see many of the Earth's major to-
pographical and climatic features. The map provides
valuable clues as to the scienti�c signi�cance of each
rule. This type of visualization could be used when-
ever the learning task involves spatial data and the
learned model is easily broken up into discrete pieces
that are applicable in di�erent places, such as rules in
Cubist or leaves in a decision tree.

A second visualization tool that we developed shows
the error of the Cubist predictions across the globe.
In Figure 3, black represents either zero error or
insuÆcient data, white represents the largest error,
and shades of gray represent intermediate error levels.
From this map, it is possible to see that the Cubist
model has large errors in Alaska and Siberia, which is
consistent with our collaborators' belief that the qual-
ity of the data in the polar regions is poor. Such a map

3After excluding these areas, we were left with 13,498
points that were covered by the model.

Figure 3. Map showing the errors of the Cubist prediction

of NDVI across the globe.

can be used to better understand the types of places in
which the model works well and those in which it works
poorly. This understanding in turn may suggest ways
to improve the model, such as including additional at-
tributes in the training data or using a di�erent learn-
ing algorithm. Such a visualization can be used for
any learning task that uses spatial data and regression
learning.

6. Discovery of Quantitative Errors in

the Data

Having successfully trained Cubist using data for one
year, we set out to see how well an NDVI model trained
on one year's data would predict NDVI for another
year. We thought this exercise would serve two pur-
poses. If we generally found transfers across years,
that would be good news for Earth scientists, because
it would let them use the model to obtain reasonably
accurate NDVI values for years in which satellite-based
measurements of NDVI are not available. On the other
hand, if the model learned from one year's data trans-
ferred well to some years but not others, that would
indicate some change in the world's ecosystem across
those years. Such a �nding could lead to clues about
temporal phenomena in Earth science such as El Ni~nos
or global warming.

What we found, to our surprise, is that the model
trained on 1983 data worked very well when tested on
the 1984 data, and that the model trained on 1985 data
worked very well on data from 1986, 1987, and 1988,
but that the model trained on 1984 data performed
poorly when tested on 1985 data. Table 3 shows the
cross-validated correlation coeÆcients for each year, as
well as the correlation coeÆcients obtained when test-
ing each year's model on the next year's data. Clearly,
something changed between 1984 and 1985. At �rst we
thought this change might have been caused by the El
Ni~no that occurred during that period.



Table 3. Correlation coeÆcients obtained when cross-

validating using one year's data and when training on one

year's data and testing on the next year's data, using the

original data set.

Data Set r

cross-validate 1983 0.97
cross-validate 1984 0.97
cross-validate 1985 0.92
cross-validate 1986 0.92
cross-validate 1987 0.91
cross-validate 1988 0.91
train 1983, test 1984 0.97
train 1984, test 1985 0.80
train 1985, test 1986 0.91
train 1986, test 1987 0.91
train 1987, test 1988 0.90

Further light was cast on the nature of the change by
examining the scatter plots that Cubist produces. In
Figure 4, the graph on the left plots predicted NDVI
against actual NDVI for the 1985 cross-validation run.
The points are clustered around the x = y line, indi-
cating a good �t. The graph on the right plots pre-
dicted against actual NDVI when using 1985 data to
test the model learned from 1984 data. In this graph,
the points are again clearly clustered around a line,
but one that has been shifted away from the x = y

equation. This shift is so sudden and dramatic that
Potter's team believed that it could not have been
caused by a natural phenomenon, but rather that it
must be due to problems with the data.

Further investigation revealed that there was in fact
an error in the data. In the data set given to to us,
a recalibration that should have been applied to the
1983 and 1984 data had not been done. We obtained
a corrected data set and repeated each of the Cubist
runs from Table 3, obtaining the results in Table 4.4

With the corrected data set, the model from any one
year transfers very well to the other years, so these
models should be useful to Earth scientists in order to
provide NDVI values for years in which no satellite-
based measurements of NDVI are available.

Our experience in �nding this error in the data sug-
gests a general method of searching for calibration er-
rors in time-series data, even when no model of the
data is available. This method involves learning a
model from the data for each time step and then test-
ing this model on data from successive time steps. If

4All of the results presented in the previous sections are
based on the corrected data set.

Table 4. Correlation coeÆcients obtained when cross-

validating using one year's data and when training on one

year's data and testing on the next year's data, using the

corrected data set.

Data Set r

cross-validate 1983 0.91
cross-validate 1984 0.91
cross-validate 1985 0.92
cross-validate 1986 0.92
cross-validate 1987 0.91
cross-validate 1988 0.91
train 1983, test 1984 0.91
train 1984, test 1985 0.91
train 1985, test 1986 0.91
train 1986, test 1987 0.91
train 1987, test 1988 0.90

there exist situations in which the model �ts the data
unusually poorly, then those are good places to look
for calibration errors in the data. Of course, when
such situations are found, the human experts must ex-
amine the relevant data to determine, based on their
domain knowledge, whether the sudden change in the
model results from an error in the data, from a known
discontinuity in the natural system being modeled, or
from a genuinely new scienti�c discovery. This idea
can be extended beyond time-series problems to any
data set that can be naturally divided into distinct
sets, including spatial data.

7. Related Work

Robust algorithms for 
exible regression have been
available for some time. Breiman, Friedman, Olshen,
and Stone's (1984) CART �rst introduced the no-
tion of inducing regression trees to predict numeric
attributes, whereas Weiss and Indurkhya (1993) ex-
tended the idea to rule induction. Each approach has
proved successful in many domains, and both CART
and Cubist have achieved commercial success. How-
ever, neither approach has yet seen much application
to Earth science data, despite the considerable work on
classi�cation learning for tasks like assigning ground
cover types to pixels (e.g., Brodley & Friedl, 1999)
and clustering adjacent pixels into groups (e.g., Ester,
Kriegel, Sander, & Xu, 1996).

The work on communicability and understandability
described in this paper builds on previous work in com-
prehensibility. Our requirement for communicability is
similar to Michalski's (1983) \comprehensibility postu-
late" which states that the results of computer induc-



Figure 4. Predicted NDVI against actual NDVI for (left) cross-validated 1985 data and (right) training on 1984 data and

testing on 1985 data.

tion should be in a form that is syntactically and se-
mantically similar to that used by humans experts. A
collection of papers on comprehensibility can be found
in Kodrato� and N�edellec (1995).

Researchers have also carried out extensive work on
techniques for visualizing data and learned knowledge.
Tufte (1983) did early in
uential work on the former
topic, whereas Keim and Kriegel (1996) review many
of the existing approaches. Within the data-mining
community, researchers have developed a variety of
methods for the graphical display of learned knowledge
(e.g., Brunk, Kelly, & Kohavi, 1996). However, al-
though much of this work employs a spatial metaphor,
little has focused on learned spatial knowledge itself.

Applications of machine learning to Earth science
data, as in methods for ground cover prediction (e.g.,
Brodley & Friedl, 1999), regularly display classes on
maps. Smyth, Ghil, and Ide (1999) plot predictions
of a learned mixture model on the globe, but our ap-
proach to visualizing areas in which regression rules
match, as well as anomalous regions, appears novel.

The European project SPIN! (2001) is seeking to de-
velop a spatial data mining system by combining data
mining tools like C4.5 (Quinlan, 1993) with tools
for visualizing spatial data like Descartes (Andrienko
& Andrienko, 1999). The planned system will let
its users visualize geographically-referenced data on
maps, and to mine the data using the data-mining

tools, from a uni�ed user interface. The researchers
plan to test the SPIN! system on applications involv-
ing seismic and volcano data. The visualization com-
ponent of the project seems focused on letting users
visualize the data, rather than visualizing the knowl-
edge learned through data mining.

There has also been considerable research on using
machine-learned knowledge to detect and either ignore
or correct errors in training data. Much of this work
has focused on removing cases with faulty class labels
(e.g., John, 1995; Brodley & Friedl, 1999), but some
has addressed detecting errors in the values of predic-
tive variables. Naturally, there are established meth-
ods for detecting and correcting calibration problems
in remote-sensing systems (e.g., Chen, 1997), but these
rely on prede�ned models. Thus, our use of regression
rules to detect systematic errors appears novel to both
the machine learning and calibration communities.

8. Future Work

Our collaboration with Earth scientists is in its early
stages, and we still have many research avenues to ex-
plore. Our next step in modeling NDVI will incorpo-
rate time explicitly by adding the year to the continu-
ous variables used in regression equations, rather than
building a separate model for each year. We hope that
by examining the resulting multi-year models, we can
learn something about climate change over time.



In this paper, we have assumed that models with fewer
rules are more understandable. In future work, we plan
to test this assumption by having our Earth science
collaborators examine various sets of rules that Cubist
produces for di�erent parameter values and telling us
which sets they think are easier to understand. Natu-
rally, we will also ask them to judge the rules' plausibil-
ity and interestingness from the perspective of Earth
science.

At the Potter team's suggestion, our runs with Cubist
have included additional variables beyond those used
in their 1998 article. Preliminary results indicate that
some of these variables give small improvements in the
predicted accuracy for NDVI. We plan to further in-
vestigate the utility of these variables and investigate
ways to measure which variables are most important
in a set of regression rules.

The NDVI predictive model is only one piece of a
larger framework, known as CASA (Potter & Klooster,
1998), that Potter's team has developed to model the
Earth's ecosystem. CASA takes the form of a process
model, stated in terms of di�erential equations, for
the production and absorption of biogenic trace gases
in the Earth's atmosphere. For the reasons of under-
standability and communicability described earlier, we
would like our learned models to take the same form,
which means we cannot rely on Cubist alone in our
future e�orts.

There has been some research on discovering laws that
take the form of di�erential equations (Todorovski &
Dzeroski, 1997), but this work has not used an exist-
ing set of equations as the starting point. We plan to
develop an algorithm that will begin with the current
CASA model and search through the space of possi-
ble equations to �nd an improved model. We hope
that this e�ort will improve the accuracy of the CASA
equations while retaining its communicability and its
scienti�c plausibility. We also hope that the changes
our system makes to the model will suggest new in-
sights about Earth science.

9. Lessons Learned

In their editorial on applied research in machine learn-
ing, Provost and Kohavi (1998) claimed that a good
application paper will \focus research on important
unsolved problems that currently restrict the practical
applicability of machine learning methods." In this
paper, we have identi�ed, and provided initial solu-
tions for, three such problems that arise in scienti�c
applications:

Communicability. In scienti�c domains, it is impor-
tant for the form of the learned models to match
the form that is customarily used in the relevant
literature, so that the learned models can be com-
municated to other scientists.

Understandability. In domains that involve spatial
data, understanding of the models can be in-
creased by visualizing the spatial distribution of
the model's errors and visualizing the locations
in which the model's components (e.g., rules) are
active.

Quantitative errors. In applications that involve
time-series numerical data, machine learning
methods can be used to identify quantitative er-
rors by testing a learned model for one time period
against data from other time periods.

Although we have developed these ideas in the con-
text of a speci�c scienti�c application { the predic-
tion of NDVI from climate variables { we believe they
have general applicability to any domain that involves
scienti�c understanding of spatio-temporal data. As
we continue utilizing machine learning to improve the
CASA model, we expect that the challenging nature
of the task will reveal other methods and principles
that contribute to both Earth science and the science
of machine learning.
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